近年部分国际会议大会及特邀报告
- 2023年,IEEE第16届国际电子测量与仪器学术会议,Ultrasonics, Sensors and AI: Applications in Quantitative Ultrasonic Guided Wave NDE of Critical Structures,大会报告,中国,哈尔滨
- 2023年,远东无损检测新技术论坛,超声导波智能定量化成像技术研究,特邀报告,中国,天津
- 2022年,第16届压电和声波理论及器件应用研讨会,超声导波定量化成像方法研究,特邀报告中国,南京
- 2022年,ASME国际机械工程大会,Stress Inversion for Acoustoelastic Guided Waves with Arbitrary Section, 特邀报告,美国,哥伦布 (俄亥俄州)
- 2022年,第49届国际定量无损检测大会,Compressive Sensing and Deep Learning Enhanced Imaging Algorithm for Sparse Guided Wave Array,特邀报告,美国,圣地亚哥(加州)
- 2021年,中国声学大会,多尺度超声成像,特邀报告,中国,上海
近期代表性论文
- 1. L. Wang, J. Li, S. Chen, Z. Fan, Z. Zeng, Y. Liu*, “Finite difference-embedded UNet for solving transcranial ultrasound frequency-domain wavefield”, J. Acoust. Soc. Am. 155(3), 2024
- 2. J. Ren, J. Li, C. Li, S. Chen, L. Liang, Y. Liu* “Deep learning with physics-embedded neural network for full waveform ultrasonic brain imaging”, IEEE Transactions on Medical Imaging, 2024.
- 3. H. Wang, J. Li, L. Wang, L. Liang, Z. Zeng, Y. Liu*, “On acoustic fields of complex scatters based on physics-informed neural networks”, Ultrasonics, 2023, 128, 106872.
- 4. L. Wang, H. Wang, L. Liang, J Li, Z. Zeng, Y. Liu*, “Physics-informed neural networks for transcranial ultrasound wave propagation”, Ultrasonics, 2023, 132, 107026.
- 5. L. Lv, S. Chen, J. Tong, X. Chen, Z. Zeng, Y. Liu*, “Ultrasonic guided wave imaging of pipelines based on physics embedded inversion neural network”, Measurement Science and Technology, 2023, 34 (11), 115401.
- 6. S. Zhang, Z. Zeng, X. Wang, S. Chen, Y. Liu*, “Imaging and characterization of cement annulus and bonding interfaces in cased wells with fully connected neural network”, Geophysics, 2023, 88(6): D357-D369.
- 7. W. Zhou, S. Wang, Q. Wu, X. Xu, X. Huang, G. Huang, Y. Liu*, Z. Fan*, “An inverse design paradigm of multi-functional elastic metasurface via data-driven machine learning”, Materials & Design 226, 111560.
- 8. D. Wang, X. Wang, S. Chen, J. Li, L. Liang, Y. Liu*, “Joint Learning of Sparse and Limited-View Guided Waves Signals for Feature Reconstruction and Imaging”, Ultrasonics, 2023, 137, 107200.
- 9. X. Wang, J. Li, D. Wang, X. Huang, L. Liang, Z. Tang, Y. Liu*, “Sparse ultrasonic guided wave imaging with compressive sensing and deep learning”, Mechanical Systems and Signal Processing, 2022, 178: 109346.
- 10. C. Zhao, X. Chen, J. Li, Y. Liu*. “Stress inversion in waveguides with arbitrary cross sections with acoustoelastic guided waves”, Journal of Applied Physics, 2022, 131(24).
- 11. X. Wang, M, Lin, J. Li, J. Tong, X. Huang, L. Liang, Y. Liu*, “Ultrasonic guided wave imaging with deep learning: Applications in corrosion mapping”, Mechanical Systems and Signal Processing, 2022, 169: 108761.
- 12. C. Zhao, J. Li, M. Lin, X. Chen, Y. Liu*, “Ultrasonic guided wave inversion based on deep learning restoration for fingerprint recognition”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(10): 2965-2974.
- 13. J. Tong, X. Wang, J. Ren, M. Lin, J. Li, H. Sun, Y. Liu*, “Transcranial Ultrasound Imaging With Decomposition Descent Learning-Based Full Waveform Inversion”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(12): 3297-3307.
- 14. J. Tong, M. Lin, X. Wang, J. Li, J. Ren, L. Liang, Y. Liu*, “Deep learning inversion with supervision: A rapid and cascaded imaging technique”, Ultrasonics, 2022, 122: 106686.
- 15. M. Lin, Y. Liu*, “Guided wave tomography based on supervised descent method for quantitative corrosion imaging”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021, 68(12): 3624-3636.
|