教师介绍

吴 斌

来源:更新时间:2025-03-05

姓 名 吴斌
职 称 教授
所在系别 精密仪器工程系
所属课题组 激光及光电测量
电子邮件 wubin@dgquanwei.com
办公地址 17楼东配楼305室
主讲课程 《仪器控制理论》
导师类型 仪器科学与技术——博导、硕导
通讯地址 天津大学精仪学院
邮政编码 300072

个人经历或学术经历

    1993年进入天津大学,先后获得本科、硕士、博士学位。2004年10月完成博士后研究工作,留校工作并晋升副教授、教授。2014-2015赴美国Clemson University做访问学者。

研究方向
  1. 激光及光电测试技术;
  2. 视觉测量技术及应用;
  3. 精密测量技术及仪器。

科研项目、成果和专利

    负责在研及完成5项国家自然科学基金项目,国家重点研发计划、科技重大专项、工程院咨询课题以及省部级科研项目、企事业单位委托等项目。

  1. 1)国家自然科学基金,基于物体表面光反射特性主动优化的三维形貌测量方法与技术研究,在研;
  2. 2)国家自然科学基金,跨尺度空间全方位三维激光传感原理与关键技术研究,完成;
  3. 3)国家自然科学基金,非正交轴系激光“经纬仪”视觉引导组合测量原理与技术,完成;
  4. 4)国家自然科学基金,微细管道管内缺陷及形貌测量新方法研究,完成;
  5. 5)国家自然科学基金,单次成像无干扰拼接大尺寸物体完整形貌测量原理与技术,完成;
  6. 6)国家重点研发计划(课题),推力器标定系统的数学模型及应用软件开发,在研;
  7. 7)国家科技重大专项(课题),大型高温锻件热态在位检测技术,完成;
  8. 8)天津市自然科学基金重点项目,关节型全空间自主扫描三维传感理论与技术研究,完成;
  9. 9)山东省重点研发计划,超高精度测量机研制,在研;
  10. 10)四川省科技计划省校合作项目,页岩气微震分布式光纤检测技术研究,完成。

    获授权发明专利32项。

  1. 1)一种用于三维测量的激光测距仪标定方法,ZL 202010837869.7
  2. 2)基于多频外差原理和光载微波干涉的距离测量方法,ZL 202210361422.6
  3. 3)准直激光器光束空间位姿标定方法,ZL 201910424060.9
  4. 4)一种室内同步定位与建图方法,ZL 201911114074.7
  5. 5)一种基于光载微波干涉的液膜厚度测量系统,ZL 202011528377.6
  6. 6)一种基于光载微波干涉的多相流多参量光纤探测装置,ZL 202011149695.1
  7. 7)非正交轴系激光全站仪的激光点视觉引导方法,ZL 201910862127.7
  8. 8)基于单目视觉的平面位姿动态测量方法,ZL 202010518752.2
  9. 9)一种电光调制器偏置电压线性工作点控制方法,ZL 201911328369.4
  10. 10)非正交轴系激光全站仪的激光束空间位姿标定方法,ZL 201910927383.X
  11. 11)激光束空间位姿的标定方法,ZL 201910253964.X
  12. 12)管道内周向液膜特征光学畸变校正与测量方法,ZL 201611218416.6
  13. 13)基于非正交轴系激光全站仪的三维坐标测量方法,ZL 201610915794.3
  14. 14)非正交轴系激光经纬仪逆运动学模型建立方法,ZL 201610949270.6
  15. 15)液膜轴向流动参数双视角测量方法,ZL 201611149619.4
  16. 16)高含气气液泡状流切片匹配及三维重建方法,ZL 201610047666.1
  17. 17)可变长度光电基准尺与测试方法,ZL 201610043856.6
  18. 18)拱桥线型测量装置,ZL 201621315381.3
  19. 19)非正交轴系激光经纬仪测量系统标定方法,ZL 201510352862.5
  20. 20)基于尺寸畸变率的微细管道管内缺陷特征参数的校正方法,ZL 201510058185.6
  21. 21)基于非正交轴系激光经纬仪的测量方法,ZL 201410850221.8
  22. 22)基于线结构光视觉传感器的基准球定位测量方法,ZL 201310065984.7
  23. 23)基于空间极坐标的粒子三维运动匹配方法,ZL 201210352213.1
  24. 24)一种机车车辆限界系统及其标定方法,ZL 201210094303.5
  25. 25)一种二维小角度激光视觉精密测量装置及其实现方法,ZL 201010570614.5
  26. 26)一种机车车辆限界系统,ZL 201220125988.0
  27. 27)面向超大型空间复杂曲面的无干扰精密测量方法,ZL 200910228356.X
  28. 28)一种无缝圆形钢管直径及直线度参数测量的方法,ZL 200910069220.9
  29. 29)基于线结构光视觉传感器实现空间圆孔几何参数测量方法,ZL 200710061297.2
  30. 30)基于自动视觉引导的大尺寸空间坐标测量方法及检测装置,ZL 200610129442.1
  31. 31)视觉测量系统现场校准装置及校准方法,ZL 200410072700.8 32)不基于粘性标记的大型三维形体形貌测量拼接方法,ZL 200410072701.2

论文、专著

    发表学术论文140余篇。

    2024年:

  1. 1)Multi-channel absolute distance measurement based on optical carrier-based microwave scanning interferometry. IEEE/OSA Journal of Lightwave Technology, 2024, Online.
  2. 2)Methods for improving imaging quality of a small-distance high-speed rotational reflection tracking system. Applied Optics, 2024, 63(11): 2981-2993.
  3. 3)Deep learning-based frequency-multiplexing composite-fringe projection. Measurement, 2024, 233: 114639.
  4. 4)AE-Net: A high accuracy and efficient network for railway obstacle detection based on convolution and transformer. IEEE Transactions on Instrumentation & Measurement, 2024, 73: 5012814.
  5. 5)Distributed temperature measurement utilizing optical carrier-based microwave interferometry. IEEE Sensors Journal, 2024, 24(6): 7954-7962.
  6. 6)3D shape measurement method for multi-reflective scenes based on accurate pixel-by-pixel phase-error adjustment strategy. Optics and Laser Technology, 2024, 174: 110661.
  7. 7)High-speed target tracking control system based on short-time rotational reflection imaging. Applied Optics, 2024, 63 (4): 1094-1104.
  8. 8)Optical-carried microwave interferometric ranging method based on frequency-scanning phase. Optics and Lasers in Engineering, 2024, 175: 108050.
  9. 9)非正交轴系激光经纬仪反向运动学线性模型. 光学学报, 2024, 44(2): 0212005-1-9.
  10. 10)Efficient phase demodulation of optical carrier-based microwave interferometry for high-precision dynamic distance measurement. IEEE/OSA Journal of Lightwave Technology, 2024, 42(2): 993-999.

    2023年:

  1. 11)Microwave photonic approach to spatial distance measurement. Proc. SPIE 12966, AOPC2023, 2023.
  2. 12)基于线性扫频的分布式光纤微震信号调制方法.激光与光电子学进展, 2023, 60(23):2306006-1-7.
  3. 13)基于变分模态分解的相位敏感光时域反射计信噪比提升方法. 光学学报, 2023, 43(21): 2106002-1-10.
  4. 14)Shafting error parameters identification and compensation of non-orthogonal laser theodolite without reference end on laser axis. Optics and Lasers in Engineering, 2023, 170: 107756.
  5. 15)High-performance phase measuring profilometry architecture based on Zynq SoC. Applied Optics, 2023, 62 (21): 5801-5808.
  6. 16)Surface structured light sensor with simultaneous color mapping. Measurement Science and Technology, 2023, 34 (10) 105117.
  7. 17)Accurate calibration for crosstalk coefficient based on orthogonal color phase-shifting pattern. Optics Express, 2023, 31(14), 23115-23126.
  8. 18)Automatic exposure control method for 3D shape measurement of specular surface based on digital fringe projection. Measurement Science and Technology, 2023, 34 (10) 105201.
  9. 19)Rapid and flexible calibration of DFPP using a dual-sight fusion target, Optics Letters, 2023, 48(8), 2086-2089.
  10. 20)Method of high-precision free-space distance measurement for noncooperative targets. Journal of the Optical Society of America A, 2023, 40(3): 531-537.
  11. 21)An efficient method for 3D precise measurement using laser spot traversal and target point interpolation. IEEE Transactions on Industrial Electronics, 2023, 70(3): 3158-3166.
  12. 22)Photonic approach for precise and efficient distance measurement via utilization of multi-frequency broadband optical carrier-based microwave signal. Optics Communications, 2023, 528: 129029.
  13. 23)Two-step calibration method of the extrinsic parameters with high accuracy for a bistatic non-orthogonal shafting laser theodolite system. Optics Express, 2023, 31(2), 2120-2134.
  14. 24)Practical zoom camera calibration method for close-range photogrammetry, Optics Letters, 2023, 48(2), 243-246.
  15. 25)High-accuracy and efficient method for calibrating spatial laser beam based on optimized PSD. Optics Communications, 2023, 527: 128946.
  16. 26)Driving system for Mach–Zehnder electro-optic modulators in microwave photonics. Applied Optics, 2022, 61(29): 8774-8782.

    2022年:

  1. 27)Method of high-precision spatial distance measurement based on optical-carried microwave interference. Optics Express, 2022, 30(11): 18762-18771.
  2. 28)Phase extraction of optical carrier-based microwave interferometry with all-phase fast Fourier transform for distance measurement. Optics and Lasers in Engineering, 2022, 156: 107090.
  3. 29)基于双目光栅重建和纹理映射的缺陷三维测量方法. 光学学报, 2022, 42(7): 0712003-1-9.
  4. 30)Calibration and measurement method based on optical lenses for large-scale 3D precise measurement. IEEE Transactions on Instrumentation & Measurement, 2022, 188: 110550.
  5. 31)Quantitative analysis method for measuring dead zone of non-orthogonal shafting structure. Measurement, 2022, 188: 110550.
  6. 32)An optimization measurement method of laser sensor based on perspective projection model. Optics Communications, 2022, 506: 127582.
  7. 33)3D reconstruction and positioning of surface features based on a monocular camera and geometric constraints. Applied Optics, 2022, 61 (6): C27-C36.

    2021年:

  1. 34)Fengjin Miao, Zhen Zhang, Design, calibration, and application of the position sensitive detector-based photoelectric reference ruler, Optical Engineering. 2021, 60(12):124109.
  2. 35)Calibration method of extrinsic parameters for non-orthogonal shaft laser theodolite measurement system, Proc. SPIE 12059, 2021.
  3. 36)A fiber-optic sensing system based on broadband light source carried microwave interferometry, Proc. SPIE 11901, 2021.
  4. 37)Optimization method of the laser beam for 3D precise measurement, Proc. SPIE 11899, 2021.
  5. 38)Algorithm for real-time defect detection of micro pipe inner surface. Applied Optics, 2021, 60 (29): 9167-9179.
  6. 39)Ranging system based on optical carrier-based microwave interferometry. Applied Optics, 2021, 60 (29): 9095-9100.
  7. 40)Registration of 3D point clouds using a local descriptor based on grid point normal. Applied Optics, 2021, 60 (28): 8818-8828.
  8. 41)A flexible rayleigh wave transducer for surface cracks detection on heterogeneous composite explosives. Instruments and Experimental Techniques, 2021, 64(3):420-426.
  9. 42)A correction method for sight axis of nonorthogonal shafting total station after calibration, I2MTC 2021, 9459788, 2021.
  10. 43)Calibration method of the laser beam based on liquid lens for 3D precise measurement. Measurement, 2021, 178.
  11. 44)Multi-position calibration method for laser beam based on cyclicity of harmonic turntable. Optics and Lasers in Engineering, 2021, 142 (7): 106591.
  12. 45)Measurement of three-dimensional characteristics of slug flow. IEEE Sensors Journal, 2021, 21 (7): 9072-9080.

    2020年:

  1. 46)A MZ modulator bias control system based on variable step P&O algorithm. IEEE Photonics Technology Letters, 2020, 32 (23): 1473-1476.
  2. 47)Dynamic calibration and compensation method of a large-scale laser beam based on specular reflection for a nonorthogonal shaft laser theodolite measurement system. Applied Optics, 2020, 59 (32): 10113-10120.
  3. 48)惯性导航辅助图像特征匹配方法研究,激光与光电子学进展,2020,(10): 338-346.
  4. 49)Dynamic pose estimation of uncooperative space targets based on monocular vision. Applied Optics, 2020, 59 (26): 7876-7882.
  5. 50)Calibration method of a laser beam based on discrete point interpolation for 3D precision measurement. Optics Express, 2020, 28(19) 27588-27599.
  6. 51)Calibration method of 1D laser rangefinder for large-scale 3D measurement under harsh environment. IEICE Electronics Express, 2020, 17(8) 1-5.
  7. 52)Non-orthogonal shafting laser sensor for trans-scale three-dimensional measurement. Proc. SPIE 11439, 2019.

奖励、荣誉和学术兼职

科研获奖

  1. 1)柔性在线自动测量方法、技术及应用,国家技术发明奖,二等奖
  2. 2)柔性在线自动测量方法,天津市技术发明奖,一等奖
  3. 3)柔性视觉测量站及其应用,仪器仪表学会科技创新奖

教学获奖

  1. 1)新工科背景下仪器类专业创新人才培养的“1+4”模式探索与实践,天津市级教学成果奖,特等奖
  2. 2)“学习、拓展、提升”三维度工程素质培养体系建设与实践,中国仪器仪表学会高等教育教学成果奖,一等奖
  3. 3)新工科背景下产教融合-校企合作协同创新研究生工程实践能力培养, 中国仪器仪表学会高等教育教学成果奖,二等奖
  4. 4)仪器仪表工程专业硕士创新培养体系与实践,天津市工程专业学位优秀教学成果奖,一等奖
  5. 5)测控技术与仪器专业卓越人才培养创新体系建设,天津市级教学成果奖,一等奖
  6. 6)学生为本能力为重—仪器类人才培养创新与实践,天津市级教学成果奖,二等奖

荣誉称号

  1. 1)国家级人才计划
  2. 2)中国青年科技奖
  3. 3)天津市青年科技奖
  4. 4)宝钢优秀教师奖
  5. 5)天津市教学名师

 

科技链接

教学链接

校内链接

  • 国际交流